
Rough volatility’s steampunk vision of future finance
Some of the trickiest puzzles in finance could be solved by blending old and new technologies
Rough volatility has generated a good amount of buzz in quant finance circles lately, which is somewhat surprising given its throwback origins. The models rely on a mid-20th century statistical measure called the Hurst parameter to capture the memory effect in markets. In an era of big data and machine learning, that makes them something of an anachronism. A quant at one large bank says, half jokingly, that his firm is “only interested in data-driven approaches”.
But dismissing rough volatility because of its old-school mechanics may be a mistake. The models are based on well-established, time-tested research. The Hurst parameter was originally developed by the British hydrologist Harold Hurst, who spent his career studying the Nile river. After noticing that fluctuations in the waterline were far from random – overflows were followed by heavier floods, and dry spells by worse droughts – he invented a way to measure the path dependence of time series. Hurst’s work led to the construction of the Aswan High Dam, the world’s largest embankment dam, and earned him the nickname “father of the Nile”.
The Hurst parameter has appeared in quant research over the years. Most recently, finance professors Jim Gatheral and Mathieu Rosenbaum in 2014 used it to capture the tendency of past moves in finance to influence future ones. They coined the term “rough volatility” for models that use the parameter.
The models can generate a surface of implied volatilities for different option strikes in a single calculation. With existing volatility models, such as Black-Scholes and SABR, numerous calculations are required to estimate implied volatilities for each tenor of an option – a process that is both time consuming and error-prone. Rough volatility models do the job faster and, some argue, more accurately.
For financial firms, the benefits could be huge. Quants at Societe Generale estimate that bid/offer spreads for Vix futures and options would shrink by 15–20% if rough volatility models were widely adopted by market-makers. Some hedge funds are already developing arbitrage strategies to exploit the differences between rough volatility and traditional models.
Others, though, seem reluctant to make the shift. The models are still largely untested and require extensive calibration. They will be expensive to implement. And budgets have already been committed to more trendy machine learning projects that have the potential to deliver similar or even better results. But that attitude appears shortsighted.
A new study suggests rough volatility models are a useful complement to data-driven approaches, such as deep hedging. This is because machine learning models struggle most when markets exhibit the sort of memory effects that rough volatility captures. Blanka Horvath, an academic at Kings College and one of the authors of the study, says firms can use rough volatility to cross-check the output of black-box algorithms to ensure they are not going astray. This dynamic works in reverse, too – some quants are using machine learning to calibrate rough volatility models and check their outputs against Black-Scholes-generated volatilities.
Machine learning and artificial intelligence are revolutionary tools that will transform the financial markets in due time. But that does not mean quants should turn their back on the past. The financial models of the future could be built on the foundations of a 60-year-old dam.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe
You are currently unable to print this content. Please contact info@risk.net to find out more.
You are currently unable to copy this content. Please contact info@risk.net to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net
More on Our take
Podcast: Lyudmil Zyapkov on the relativity of volatility
BofA quant’s new volatility model combines gamma processes and fractional Brownian motion
Market knee-jerks keep VAR models on their toes
With a return to volatility, increased backtesting exceptions show banks’ algos are stretched
A market-making model for an options portfolio
Vladimir Lucic and Alex Tse fill a glaring gap in European-style derivatives modelling
How AI agents could become investing’s crash test dummies
Firms mull the use of chatbot simulations to test organisational set-ups
Degree of influence 2024: volatility and credit risk keep quants alert
Quantum-based models and machine learning also contributed to Cutting Edge’s output
Podcast: Alexandre Antonov turns down the noise in Markowitz
Adia quant explains how to apply hierarchical risk parity to a minimum-variance portfolio
Why did UK keep the pension fund clearing exemption?
Liquidity concerns, desire for higher returns and clearing capacity all possible reasons for going its own way
UBS’s Iabichino holds a mirror to bank funding risks
Framing funding management as an optimal control problem affords an alternative to proxy hedging