Banks tout machine learning amid regulatory concerns

Machine learning being used to build challenger models for model validation

surveillance-robot
Risk managers are getting comfortable with machine learning

Banks are doubling down on the use of machine learning techniques for model validation in the face of regulatory scepticism over ‘black box’ models.

Machine learning has allowed banks to slash the amount of time and resources they dedicate to complying with SR 11-7, the model risk management framework issued by US prudential regulators in 2011.

The guidance ushered in a stricter era of model governance, formally separating first-line model development and second-line validation teams and

Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.

To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe

You are currently unable to copy this content. Please contact info@risk.net to find out more.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to Risk.net? View our subscription options

Most read articles loading...

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here