SSgA may implement genetic programming investment model
The investment committee of State Street Global Advisors (SSgA), manager of $770 billion in assets, will decide on October 16 whether to implement an investment model derived from genetic programming exercises to its $390 million emerging market equities investment fund.
Genetic programming involves telling a computer system what needs to be done, without telling it how to do it. It is part of the field of evolutionary computation begun in the late 1970s, in which programs were developed via simulation of the natural processes of selection, mutation and reproduction.
Evolutionary computation depends on a better-than-random process of combining algorithm and program elements to arrive at the ‘unjustified step’, or the flash of insight that marks all true human invention.
SSgA portfolio managers work with the advanced research team to determine which investment factors to include in what Foley calls the “factor soup” from which all evolution proceeds. In the case of genetically programming the US stock selection model, for example, various accounting, growth, value and momentum factors were included in the soup. The measure of fitness for programs in each generation is a weighted combination of return and information ratio, details of which Foley refused to comment. SSgA then finds the optimal solution when the average fitness of new populations and the highest fitness members of the population no longer improve, but tend to converge.
While the most prevalent technique used by portfolio managers, some market observers have questioned the value of factor techniques, even with the added sophistication of genetic programming for optimisation. The concern stems from the inherent instability of the financial market environment. There is a danger that when factors influencing financial markets rapidly change, as happened at the end of the 1990s technology bubble, factor-driven portfolio models may fail to pick up the new influences.
Foley’s team has invested the equivalent of five person years into the project, and has been running the evolutionary processes on a Unix system, often overnight. Foley said the processing expense is significant, but networking even 10 high-power desktops could generate good results.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe
You are currently unable to print this content. Please contact info@risk.net to find out more.
You are currently unable to copy this content. Please contact info@risk.net to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net
More on Technology
FX options: rising activity puts post-trade in focus
A surge in electronic FX options trading is among the factors fuelling demand for efficiencies across the entire trade lifecycle, says OSTTRA’s commercial lead, FX and securities
Dismantling the zeal and the hype: the real GenAI use cases in risk management
Chartis explores the advantages and drawbacks of GenAI applications in risk management – firmly within the well-established and continuously evolving AI landscape
Chartis RiskTech100® 2024
The latest iteration of the Chartis RiskTech100®, a comprehensive independent study of the world’s major players in risk and compliance technology, is acknowledged as the go-to for clear, accurate analysis of the risk technology marketplace. With its…
T+1: complacency before the storm?
This paper, created by WatersTechnology in association with Gresham Technologies, outlines what the move to T+1 (next-day settlement) of broker/dealer-executed trades in the US and Canadian markets means for buy-side and sell-side firms
Empowering risk management with AI
This webinar explores how artificial intelligence (AI) can strip out the overheads and effort of rapidly modelling, monitoring and mitigating risk
Core-Payments for business leaders: why real-time access to payment data is key to long‑term business success
Business leaders require easy access to timely, reliable and complete information across post-trade processes. Aside from the usual requirements of senior managers to optimise for risk, revenues and costs, they increasingly need to demonstrate to their…
Risk applications and the cloud: driving better value and performance from key risk management architecture
Today's financial services organisations are increasingly looking to move their financial risk management applications to the cloud. But, according to a recent survey by Risk.net and SS&C Algorithmics, many risk professionals believe there is room for…
Machine learning models: the validation challenge
Machine learning models are seeing increasing demand across the capital markets spectrum. But how can firms improve their chances of gaining internal and regulatory approval for these type of models?