Journal of Risk
ISSN:
1465-1211 (print)
1755-2842 (online)
Editor-in-chief: Farid AitSahlia
Need to know
- We show how to fit a Cornish–Fisher distribution with exact skewness and kurtosis.
- The method extends to multivariate distribution fitting.
- The distributions fit financial data well.
- They combine with estimation-error reduction and improve estimates of VaR and CVaR.
Abstract
The truncated Cornish–Fisher inverse expansion is well known and has been used to approximate value-at-risk (VaR) and conditional value-at-risk (CVaR). The following are also known: the expansion is available only for a limited range of skewnesses and kurtoses, and the distribution approximation it gives is poor for larger values of skewness and kurtosis. We develop a computational method to find a unique, corrected Cornish–Fisher distribution efficiently for a wide range of skewnesses and kurtoses. We show that it has a unimodal density and a quantile function which is twice-continuously differentiable as a function of mean, variance, skewness and kurtosis. We extend the univariate distribution to a multivariate Cornish–Fisher distribution and show that it can be used together with estimation-error reduction methods to improve risk estimation. We show how to test the goodness-of-fit. We apply the Cornish–Fisher distribution to fit hedge-fund returns and estimate CVaR. We conclude that the Cornish–Fisher distribution is useful in estimating risk, especially in the multivariate case where we must deal with estimation error.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net