Journal of Credit Risk
ISSN:
1744-6619 (print)
1755-9723 (online)
Editor-in-chief: Linda Allen and Jens Hilscher
Default predictors in credit scoring: evidence from France’s retail banking institution
Ha-Thu Nguyen
Abstract
ABSTRACT
The aim of this paper is to present the set-up of a behavioral credit-scoring model and estimate such a model using an auto loan data set of one of the largest multinational financial institutions based in France. We rely on the logistic regression approach, which is commonly used in credit scoring, to construct a behavioral scorecard. A detailed description of the model-building process is provided, as are discussions about specific modeling issues. The paper then uses a number of quantitative criteria to identify the model best suited to modeling. Finally, it is demonstrated that such a model possesses the desirable characteristics of a scorecard.
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@risk.net or view our subscription options here: http://subscriptions.risk.net/subscribe
You are currently unable to print this content. Please contact info@risk.net to find out more.
You are currently unable to copy this content. Please contact info@risk.net to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net