Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
Clustering market regimes using the Wasserstein distance
Need to know
- We develop and apply a modification of the k-means clustering algorithm to financial data using the Wasserstein distance and Wasserstein barycenter.
- We qualitatively compare our model to two classical approaches and show that it outperforms them, especially when returns are non-Gaussian.
- We quantitatively validate our approach using a wide variety of methods, including some classical, and a maximum mean discrepancy approach, validating qualitative results.
Abstract
The problem of rapid and automated detection of distinct market regimes is a topic of great interest to financial mathematicians and practitioners alike. In this paper, we outline an unsupervised learning algorithm for clustering financial time series into a suitable number of temporal segments (market regimes). As a special case of the above, we develop a robust algorithm that automates the process of classifying market regimes. The method is robust in the sense that it does not depend on modeling assumptions of the underlying time series, as our experiments with real data sets show. This method – dubbed the Wasserstein k-means algorithm – frames such a problem as one on the space of probability measures with finite pth moment, in terms of the p-Wasserstein distance between (empirical) distributions. We compare our Wasserstein k-means approach with more traditional clustering algorithms by studying the so-called maximum mean discrepancy scores between, and within, clusters. In both cases it is shown that the Wasserstein k-means algorithm greatly outperforms all considered alternative approaches. We demonstrate the performance of all approaches both on synthetic data in a controlled environment and on real data.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net