Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
Gradient boosting for quantitative finance
Need to know
- Gradient boosted regression trees are used to learn the pricing map of financial derivatives.
- Gradient boosting models deliver fast price predictions and are easy to train.
- Feature engineering might enhance the predictive performance of the models.
- The structure of the trees is analyzed to explain price predictions.
Abstract
In this paper, we discuss how tree-based machine learning techniques can be used in the context of derivatives pricing. Gradient boosted regression trees are employed to learn the pricing map for a couple of classical, time-consuming problems in quantitative finance. In particular, we illustrate this methodology by reducing computation times for pricing exotic derivatives products and American options. Once the gradient boosting model is trained, it is used to make fast predictions of new prices. We show that this approach leads to speed-ups of several orders of magnitude, while the loss of accuracy is very acceptable from a practical point of view. In addition to the predictive performance of these methods, we acknowledge the importance of interpretability of pricing models. For both applications, we therefore look under the hood of the gradient boosting model and elaborate on how the price is constructed and interpreted.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net