Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
Numerical techniques for the Heston collocated volatility model
Fabien Le Floc’h and Cornelis W. Oosterlee
Need to know
- Efficient pricing formulae for the calibration of the Heston collocated volatility model (Heston-CLV)
- Second-order Monte Carlo scheme to price exotics.
- Assessment of various second-order finite difference schemes to price barrier options.
Abstract
In the collocating volatility (CLV) model, the stochastic collocation technique is used as a convenient representation of the terminal distribution of the market option prices. A specific dynamic is added in the form of a stochastic driver process, which allows more control over the prices of forward starting options. This is reminiscent of the Markov functional models. (Grzelak uses a single-factor Ornstein–Uhlenbeck process as the driver for the CLV model, and Fries uses a single-factor Wiener process with time-dependent volatility in his equity Markov functional model. Van der Stoep et al consider a Heston stochastic volatility driver process and show that it offers more flexibility to capture the forward smile in the context of foreign exchange options.) In this paper, we discuss all aspects of derivative pricing under the Heston– CLV model: calibration with an efficient Fourier method; a Monte Carlo simulation with second-order convergence; and accurate partial differential equation pricing through implicit and explicit finite-difference methods.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net