Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
Need to know
- Develop kriging/Gaussian process models for simulation-based optimal stopping.
- Investigate impact of different experimental designs.
- Advocate the use of batched simulations to improve statistical modeling.
- Benchmark the results on 3 different sets of Bermudan contracts.
Abstract
We investigate two new strategies for the numerical solution of optimal stopping problems in the regression Monte Carlo (RMC) framework proposed by Longstaff and Schwartz in 2001. First, we propose using stochastic kriging (Gaussian process) metamodels for fitting the continuation value. Kriging offers a flexible, non-parametric regression approach that quantifies approximation quality. Second, we connect the choice of stochastic grids used in RMC with the design of experiments (DoE) paradigm. We examine space-filling and adaptive experimental designs; we also investigate the use of batching with replicated simulations at design sites to improve the signal-to-noise ratio. Numerical case studies for valuing Bermudan puts and max calls under a variety of asset dynamics illustrate that our methods offer a significant reduction in simulation budgets compared with existing approaches.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net