Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
Exact simulation pricing with Gamma processes and their extensions
Lancelot F. James, Dohyun Kim and Zhiyuan Zhang
Abstract
ABSTRACT
Exact path simulation of the underlying state variable is of great practical importance in simulating prices of financial derivatives or their sensitivities when there are no analytical solutions for their pricing formulas. However, in general, the complex dependence structure inherent in most nontrivial stochastic volatility (SV) models makes exact simulation difficult. In this paper, we present a nontrivial SV model that parallels the notable Heston SV model in the sense of admitting exact path simulation as studied by Broadie and Kaya. The instantaneous volatility process of the proposed model is driven by a Gamma process. Extensions to the model including superposition of independent instantaneous volatility processes are studied. Numerical results show that the proposed model outperforms the Heston model and two other Lévy driven SV models in terms of model fit to the real option data. The ability to exactly simulate some of the path-dependent derivative prices is emphasized. Moreover, this is the first instance where an infinite activity volatility process can be applied exactly in such pricing contexts.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net