Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
A stochastic mesh method for pricing high-dimensional American options
Mark Broadie and Paul Glasserman
Abstract
ABSTRACT
High-dimensional problems frequently arise in the pricing of derivative securities – for example, in pricing options on multiple underlying assets and in pricing term structure derivatives. American versions of these options, ie, where the owner has the right to exercise early, are particularly challenging to price. We introduce a stochastic mesh method for pricing high-dimensional American options when there is a finite, but possibly large, number of exercise dates. The algorithm provides point estimates and confidence intervals; we provide conditions under which these estimates converge to the correct values as the computational effort increases. Numerical results illustrate the performance of the method.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net