Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
Analysis of the stability of the linear boundary condition for the Black–Scholes equation
Heath Windcliff, Peter A. Forsyth, Ken R.Vetzal
Abstract
ABSTRACT
The linear asymptotic boundary condition, which assumes that the second derivative of the value of the derivative security vanishes as the asset price becomes large, is commonly used in practice. To our knowledge there have been no rigorous studies of the stability of this method despite the fact that the discrete matrix equations obtained using this boundary condition lose diagonal dominance for large time steps. In this paper, we demonstrate that the discrete equations obtained using this boundary condition satisfy necessary conditions for stability for a finite-difference discretization. Computational experiments show that this boundary condition satisfies sufficient conditions for stability as well.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net