Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
Finite sample comparison of alternative estimators of Itô diffusion processes: a Monte Carlo study
George J. Jiang, John L. Knight
Abstract
ABSTRACT
In this paper, the authors consider alternative approaches to the estimation of Itô diffusion processes from discretely sampled observations. Using Monte Carlo simulation, the finite sample properties of various estimators are investigated, and in particular the performance of the nonparametric estimators proposed in Jiang and Knight (1997) is compared with common parametric estimators, namely the ML, NLS (or OLS), and GMM estimators. The simulation results show that, with certain large samples over a short sampling period, both the nonparametric diffusion and drift estimators perform reasonably well. However, while all the parametric diffusion estimators perform very well, the parametric drift estimators perform very poorly.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net