Journal of Computational Finance

Risk.net

The relative efficiency of numerical methods for pricing American options under Lévy processes

Sergei Levendorskiˇõ, Oleg Kudryavtsev, Vadim Zherder

ABSTRACT

We analyze properties of prices of American options under Lévy processes and the related difficulties for design of accurate and efficient numerical methods for pricing of American options. The case of Lévy processes with an insignificant diffusion component and jump part of infinite activity but finite variation (the case most relevant in practice according to the empirical study in Carr et al (2002)) appears to be the most difficult. Several numerical methods suggested for this case are discussed and compared. It is shown that approximations by diffusions with embedded jumps may be too inaccurate unless the time to expiry is large. However, the fitting by a diffusion with embedded exponentially distributed jumps and a new finite difference scheme suggested in the paper can be used as good complements, which ensure accurate and fast calculation of the option prices both close to expiry and far from it.We demonstrate that if the time to expiry is two months or more, and the relative error 2–3% is admissible, then the fitting by a diffusion with embedded exponentially distributed jumps and the calculation of prices using the semi-explicit pricing procedure in Levendorskiˇõ (2004a) is the best choice.

Sorry, our subscription options are not loading right now

Please try again later. Get in touch with our customer services team if this issue persists.

New to Risk.net? View our subscription options

You need to sign in to use this feature. If you don’t have a Risk.net account, please register for a trial.

Sign in
You are currently on corporate access.

To use this feature you will need an individual account. If you have one already please sign in.

Sign in.

Alternatively you can request an individual account here