
The evaluation of credit portfolio risk models is an important issue for both
banks and regulators. It is impeded by the scarcity of credit events, long fore-
cast horizons, and data limitations. To make efficient use of available
information, the evaluation can be based on a model’s density forecasts,
instead of examining only the accuracy of point forecasts such as value-at-
risk. We suggest the Berkowitz (2001) procedure, which relies on standard
likelihood ratio tests performed on transformed loss data. We simulate the
power of this approach to detect misspecified parameters in asset value
models, focusing on asset correlations. Monte Carlo simulations show that a
loss history of ten years can be sufficient to resolve uncertainties currently
present in credit risk modeling. The power is better for two-state models than
for multi-state models, and it can be improved by incorporating cross-
sectional information.

1 Introduction

Portfolio credit risk models quantify potential losses (and gains) from holding a
portfolio of risky debt.1 Their outcome is a probability distribution for the value
effects of credit-related events, which usually has a one-year horizon. Some
models restrict the analysis to losses from defaults, while others include the
effects of credit quality changes. In the literature on these models, it is custom-
ary to refer to the difficulties of evaluating their quality. Several years after the
first models have been proposed, there is only one paper that empirically
examines their predictive ability (Nickell, Perraudin, and Varotto, 2001). One
explanation for the scarcity of research are concerns that evaluation procedures
developed for market risk models have little power when applied to credit data
sets. The available time series on credit portfolio losses are believed to be too
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short to produce reliable results. To date, there is no study that clarifies to what
extent these doubts are justified.

We show through simulations that the statistical power of validation proce-
dures can be satisfactory if they assess the adequacy of the complete credit
portfolio loss distribution, instead of examining the accuracy of individual point
forecasts such as value-at-risk. For this purpose, we recommend the Berkowitz
(2001) test procedure. Observed credit losses are transformed such that they are
independent and identically distributed standard normal random variables under
the null hypothesis that the model is correct. Standard likelihood ratio tests can
then be used to test this hypothesis. For a market risk setting, Berkowitz shows
that powerful tests can be constructed with a sample size as small as 100.

Our simulations indicate that as few as ten annual observations are sufficient
to detect misspecifications in credit risk models, a finding that can be illustrated
through the following examples. Many credit risk models capture credit event
correlations through correlated latent variables. These latent variables are usu-
ally interpreted as borrowers’ asset values. According to the Basel Committee on
Banking Supervision (2001a), an average asset correlation of 20% is consistent
with industry practice. In a calibration exercise for US loan portfolios, however,
Gordy (2000) obtains correlation estimates that vary between 1.5% and 12.5%.
With ten years of data on annual losses, a true correlation of 5% and a signifi-
cance level of 10%, the probability of rejecting a correlation assumption of 20%
can be above 90% in our examples. The result is robust to the number of borrow-
ers, the choice of the significance level, and to heterogeneity and noise in default
probabilities. If the asset correlation is misspecified within a multi-state model
which includes migration and recovery risk, the power is lower than in the case
of two-state models which forecast only the risk of default.

Another currently debated issue is whether the latent variables are normally
distributed. If they follow a t-distribution with 10 degrees of freedom, the proba-
bility of rejecting the normal assumption can again be above 90%. Default
probability estimates that lead to similar errors in value-at-risk figures as incor-
rect asset correlations or distributions are identified with a larger probability
because they also lead to false predictions of mean default rates. An incorrect
assumption about the autocorrelation in the time series of the systematic factor is
not easily detected.

To exploit information contained in the cross-section of credit losses, the
Berkowitz procedure can be adapted to jointly test the validity of predictions for
subportfolio losses. Specifically, we consider cases where evaluators have
a priori information on the nature of possible misspecifications. This information
can be used to split the portfolio into subportfolios. To gain an intuition for the
approach, consider a portfolio whose obligors are evenly split across two sectors.
The true default probability is 1% in the first sector, and 3% in the second. Now
assume that an analyst uses the default experience of this portfolio to evaluate a
model that posits a uniform default probability of 2%. If the test is based only on
the average default rate of the entire portfolio, or random subsets thereof, the
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inadequacy of the model will not be revealed because the expected default rate
will be 2%. If the analyst conjectures that the default probability differs across
sectors, she could examine the default experience of single sector subportfolios.
She would then be in a much better position to identify the inadequacy of the
model. One could argue that such a misspecification is irrelevant for practical pur-
poses, because the aggregate credit risk prediction is almost correct. The argument
would neglect the fact that credit portfolios change through time, while model
adequacy is assessed using several years of historical data. Consider the following
uses of the model described above: a bank allocating capital based on estimated
credit portfolio risk, investors monitoring the risk of a managed corporate bond
portfolio, or, in some future time, regulators setting capital requirements accord-
ing to estimated credit portfolio risk. Once the model described above is approved
for any of these purposes, credit managers have incentives to increase exposures
to the second sector whose default probability is underestimated by the model.
Estimated credit risk would remain constant, while expected returns, in the
presence of a default risk premium, would rise.

Papers that either empirically evaluate credit portfolio risk models or theoreti-
cally develop statistical evaluation methods are rare. The only empirical paper is
Nickel, Perraudin and Varotto (2001), who use two different credit risk models to
predict the credit value-at-risk of a large portfolio of dollar-denominated
eurobonds. The authors compare the expected and the realized number of value-
at-risk violations, but do not conduct a formal test of the models’ validity. The
only theoretical paper is Lopez and Saidenberg (2001), who propose cross-
sectional resampling techniques in order to make more efficient use of available
data. In a former version of this paper (Frerichs and Löffler, 2002), we point out a
difficulty of tests that are based on resampled portfolios. Credit losses in resam-
pled portfolios will be cross-sectionally dependent, which, if unaccounted for, can
bias statistical inference. Other credit risk papers, like Carey (1998) and Carey
(2001), simulate credit loss distributions based on empirical data, and examine
which portfolio characteristics are important to credit value-at-risk. As credit data
are hardly available, other studies employ stylized portfolios to analyze the vari-
ance of risk measures across credit risk models (Gordy, 2000), and portfolio types
(Gordy, 2000, Kiesel, Perraudin and Taylor, 2001). The Berkowitz (2001) test
procedure has been implemented in a couple of studies in fields other than credit
risk. Clements and Smith (2000) compare three different validation techniques for
models to forecast macroeconomic variables: the approach of Diebold, Gunter
and Tay (1998), Berkowitz (2001) and a normality test recommended by Doornik
and Hansen (1994).2 The authors suspect that the Berkowitz (2001) test and the
normality test might be sensitive to outlier observations. De Gooijer and Zerom
(2000), however, in another comparative study of prediction evaluation criteria for
models to forecast interest rates cannot confirm this conjecture.

The paper is organized as follows. Section 2 describes the framework for the
evaluation of test procedures. Section 3 assesses the power of the Berkowitz
(2001) test procedure using Monte Carlo simulations. Section 4 concludes.
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2 Framework for the evaluation of test procedures

A natural way for evaluating the power of test procedures is to employ a Monte
Carlo study. We simulate a large number of artificial credit histories that are all
generated by one specific credit portfolio risk model. We then state the null
hypothesis that the history is governed by some model specification, choose a
significance level, and apply a test separately for each simulated history. The
performance of the test is judged by two criteria: if the H0-model is the one that
has generated the history, the rejection frequency should equal the chosen signif-
icance level, ie, the size of the test. If the H0-model is incorrect, the rejection
frequency, ie, the power of the test, should be as large as possible.

We examine models that capture correlations in credit events through latent
variables. Following Merton (1974), these latent variables are usually thought of
as the firms’ asset values. In the option-theoretic approach of Merton, a firm
defaults if its asset value falls below a critical threshold defined by the value of
liabilities. Asset value correlations thus translate into correlations of credit qual-
ity changes. Such models have been investigated by, among others, Gordy
(2000), Lucas et al (2001) and Frey and McNeil (2001). The asset value
approach to modeling portfolio credit risk underlies the risk weights proposed
by the Basel Committee on Banking Supervision (2001a) as well as industry
models such as CreditMetrics and KMV PortfolioManager.3

We examine two variants, which differ in their complexity:

(i) Initially, we neglect both migration risk and recovery rate uncertainty.
Recovery rates are assumed to be zero for all loans. In consequence, the
loss distribution is fully described by the distribution of the number of
defaults within a portfolio. The rationale for choosing a two-state model is
that it poses little data requirements, and so lends itself more easily to
empirical tests. Many banks do not mark to market their loan positions, or
did not do so until recently. Also, consistent data on recovery rates may not
be available. By contrast, most banks should be able to collect the number
of defaults that occurred in the recent past. Note, too, that the risk weights
proposed by the Basel Committee are based on such a two-state model.4

(ii) We derive the full distribution of portfolio losses by accounting for the risk
of default, the risk of migration, and both systematic and unsystematic
recovery risk. As in previous literature, we neglect general interest rate risk
and specific spread risk in order to focus on the risk from credit events.

In a two-state world, available credit portfolio risk models like CreditRisk+,
CreditMetrics, KMV PortfolioManager or CreditPortfolioView are similar in
structure and produce almost identical outputs when parameterized consistently.5

For this reason, we are confident that our results are applicable to a broad range
of credit risk models. Even though we restrict the analysis to one particular class
of portfolio credit risk models, we will nevertheless speak of various ‘models’
we are going to evaluate. In the following, the term ‘models’ will thus refer to
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different parameterizations of the basic latent variable approach.
In our framework asset value changes ∆Ãi depend on only one systematic fac-

tor Z̃ and idiosyncratic factors ε̃i:
6

(1)

Where Z̃ and ε̃i are iid N(0,1), as is the asset value change ∆Ãi . A borrower
defaults whenever ∆Ãi < Φ–1(pi), where pi is the unconditional default probabi-
lity and Φ ( . ) denotes the cumulative standard normal distribution function. For
a given realization of the systematic factor Z the conditional default probability
pi | Z equals

(2)

The factor loadings wi determine asset correlations. In the case of a uniform
loading, wi = w for all i, the asset correlation is equal to w2 for all pairs of
borrowers. Default correlations can be calculated via the bivariate normal distri-
bution.7 We also examine a case where the factor Z̃ follows an autoregressive
process, rather than being iid. Even though general credit risk is likely to be
cyclical in practice, assuming the factor to be uncorrelated seems to be more
appropriate when it comes to evaluating actual credit risk models used by banks.
The assignment of bank internal ratings is based on the current default probabi-
lity, usually measured over a one-year horizon (Carey and Hrycay, 2001). In
terms of the model, this means that default probability estimates for period t are
conditioned on information about the realizations of Z̃ up to t. Any predictability
in general credit conditions would thus be accounted for by default probability
estimates. The case is different when default probability estimates are based on
agency ratings. Rating agencies typically employ a through-the-cycle approach,
that is, intentionally neglect cyclical variation in credit quality (see Carey and
Hrycay, 2001).

Since Gordy (2000), Lucas et al (2001) and Frey and McNeil (2001) show
that the multivariate normal assumption for asset returns is critical for the
results, we will also investigate a case in which asset returns follow a t-distribu-
tion. The t-distribution converges to the normal as the degrees of freedom
approach infinity, which means that choosing the shape of the distribution is one
step in parameterizing the asset value model (1).

For both two-state models (i) and the general multi-state models (ii) we need
to specify the factor sensitivity wi and the distribution of the common factor. For
a two-state model, all we need in addition is the individual default probabilities
pi. To model the full loss distributions, we assume G rating categories; the last
category G corresponds to default. The probability of moving from category k to
category l is given by pkl. The portfolios we analyze contain only simple, fixed-
rate loans. The initial maturity of each loan is set to five years. The value effects
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of rating transition are derived from assumptions on rating-specific zero yields.
We set the annual coupon rate such that loans are valued at par at the beginning
of horizon. At the end of horizon, the position is revalued using implied forward
rates, taking into account that interest has accrued, and that maturity has
decreased to four years. Forward rates are fixed as we ignore market risk. In the
case of default, we take Ri, the recovery rate of loan i, to be a fraction of the
principal. Frye (2000) shows that recovery risk has both idiosyncratic and
systematic components. We therefore follow Frye (2000) and model recovery
rates as

(3)

where mR is the mean recovery rate assumed for the loans.8 Z̃ is the common
factor from (1); it introduces systematic recovery risk. Idiosyncratic recovery
risk is modeled through the component ω̃ i , which is iid N(0,1). The factor sensi-
tivities qi determine the relative importance of systematic and unsystematic
recovery risk, while the parameter s determines the overall magnitude of recov-
ery risk. With this formulation, recoveries are normally distributed, meaning that
they can fall below zero. This seems unproblematic for large portfolios such as
the ones analyzed in this paper, where the realized mean recovery rate is un-
likely to become negative.

In the following, we describe the parameters used for most of the analyses;
we refer to this set of assumptions as the base case. Base case assumptions are
summarized in Table 1. They will be varied to check the robustness of the
results. We consider two-state models with zero recovery in the case of default.
Portfolios are homogeneous in terms of default probability, asset correlations,
and loan size. We assume that the available data sets comprise T = 10 years of
annual data on the number of defaults within homogeneous portfolios of
N = 10,000 borrowers. The common factor is assumed to be serially uncor-
related, and asset values follow a standard normal distribution. We choose an
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TABLE 1 Base case setup

Parameter Value

Number of possible states 2
Recovery in case of default 0
Number of borrowers (N) in portfolio 10,000
Constant unconditional 1-year default probability (p) 1%
Uniform asset correlation in true data-generating model (w2) 5%
Asset value distribution N (0, 1)
Serial correlation of systematic factor None
Forecast horizon (years) 1
Length of credit loss history (T years) 10
Test size /Type-I error 10%



unconditional default probability of 1% for each obligor and a uniform asset cor-
relation of w2 = 5% for all pairs of borrowers. Both values are consistent with a
random effects probit analysis of Standard & Poor’s rating data from
1982–1999, which yields unconditional default probability estimates of 1.2%
(1.1%) and uniform asset correlation estimates of 3.9% (6.0%) for all issuers
(BB issuers).9

In H0 models, either the asset correlation, or the asset value distribution, or
default probabilities are changed from the base case. For each H0 model, we first
determine the predicted loss distribution using K = 1,000,000 random loss
scenarios. Based on a simulated T-year loss history, we calculate a test statistic
for the adequacy of the H0 model. A test’s power is assessed based on S = 10,000
tests. For each test, we generate an independent T-year loss history from the true
credit risk model.

To summarize, a simulation exercise that determines the probability of reject-
ing a specific credit risk model is structured as follows:

(1) Specify portfolio size and portfolio structure.
(2) Specify data availability, ie, the number of years for which credit losses
are observed (= T).
(3) Specify the true, data generating credit risk model. Includes full para-
meterization for the portfolio from (1).
(4) Specify the H0 model, ie, the credit risk model whose validity is to be
tested. Includes full parameterization for the portfolio from (1). Use Monte
Carlo simulation (K = 1,000,000 trials) to obtain the loss distribution pre-
dicted by this model for the portfolio structure chosen in (1).
(5) Based on (1) to (3), randomly generate a data set comprising T years of
annual credit losses, that is, each observation of the loss history is drawn from
the true, data generating credit risk model.
(6) Conduct the statistical test for the validity of the H0 model given the loss
history from (5).
(7) Repeat steps (5) to (6) S = 10,000 times. The test’s power is the relative
frequency with which the H0 model is rejected in the course of these S trials.
Step (7) requires critical values of the test statistic. In most cases we directly
refer the statistic to its asymptotic distribution. For the tests using cross-
sectional information, asymptotic values are inappropriate, which is why we
simulate critical values as described in Section 3.3.

3 Evaluating credit risk models based on the entire distribution

In this section, we apply the Berkowitz (2001) procedure to the evaluation of
portfolio credit risk models. The evaluation is based on a model’s density fore-
casts, not on the accuracy of individual point forecasts such as value-at-risk.10

Specifically, the observed loss history is transformed such that one obtains a
series of standard normally distributed variables if the risk model is correct.
Standard tests can be performed to test this characteristic.
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Berkowitz (2001) applies a simple twist to the so-called Rosenblatt (1952)
transformation of observed data. First, the estimated cumulative distribution
function F̂(. ) is applied to observed losses

(4)

where yt are observed losses and f̂ (u) is the forecasted probability of a loss of
u.11 If the estimated loss distribution is equal to the true one, the transformed
variable xt is iid U(0,1), where U(. ) denotes the uniform distribution.

In a second step, Berkowitz suggests to apply another transformation using
the inverse of the standard normal distribution function Φ(. )

(5)

resulting in a series of transformed observations zt which is iid N(0,1) if the pre-
dicted distribution function is correct.12 Berkowitz recommends using a
likelihood ratio test for testing whether the series zt is serially uncorrelated with
mean zero and unit variance. In the following, we apply such tests to simulated
credit loss data in order to assess their power.13

3.1 Two-state models

3.1.1 Alternative models differ in asset correlation assumption

In this section, we compare asset value models with one systematic factor and a
uniform mutual asset correlation (all parameters as in Table 1). We define differ-
ent null hypotheses by changing the correlation parameter w2 on the interval
[0%, 20%].

The test statistic is calculated based on the log-likelihood function of the uni-
variate normal distribution for the transformed series of observed credit losses zt
(which was introduced in the last section):

(6)

where T is the number of years. Since both the true model and the H0 do not
exhibit serial correlation, we do not need to test for it in this case. The maximum
likelihood estimators for the mean and variance of the transformed variable are
given by
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(7)

The LR-test is then structured to test the joint hypothesis that the zt have zero
mean and unit variance. It is given by

(8)

The statistic is referred to the chi-squared distribution with two degrees of free-
dom.

Figure 1 shows the simulated power of the test statistic in the base case, as
well as in two variations in which the true asset correlation is 10% or 20%
instead of 5% as in the base case. As the asset correlation of the null hypothesis
moves away from the true value, the test’s power increases the faster, the lower
the true asset correlation is. If the true asset correlation equals 5%, the power is
larger than 50% if the assumed correlation is below 2.5% or above 10.5%. For
an asset correlation equalling 10% (20%), the corresponding values are 5%
(11%) and 19% (32%). If the null hypothesis posits a zero asset correlation, it is
rejected in 100% of all cases.

If the null hypothesis coincides with the true model, the power is slightly
higher than the nominal significance level of 10%. Due to the small sample size,
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FIGURE 1 Power of Berkowitz test depending on the true asset correlation.
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the test statistic is not exactly chi-squared distributed. The inaccuracy seems to
be small, and is probably acceptable in many practical applications. It could be
eliminated by simulating the critical values for the test statistic.

The results for the true asset correlation of 5% depicted in Figure 1 are also
shown in column three of Table 2, along with some additional information that
puts them into perspective. The second column contains the 99% quantiles of the
loss distribution under the various null hypotheses to illustrate how different
these distributions are from the true model. In our two-state setting with zero
recovery rate, the 99% quantile of the loss distribution corresponds to the num-
ber of defaults that is exceeded only in 1% of all trials. Columns 4–9 of Table 2
report the simulated power when the size of the test, the available database, or
the portfolio structure is changed. We examine the following, non-accumulating
variations:

❑ we use a significance level of 5% instead of 10%
❑ the portfolio contains loans to 1,000 or 5,000 borrowers, respectively (instead

of 10,000)
❑ the available history comprises only five years instead of ten
❑ the default probability is 0.5% instead of 1%
❑ the portfolio is heterogeneous in terms of default probabilities. Rather than

assuming a uniform default probability of 1% we split the portfolio into seven
rating classes (Table 3). The structure is based on the high quality credit port-
folio in Gordy (2000). Compared to the Gordy portfolio, we adjust the
number of obligors in rating classes A and B to achieve a mean default proba-
bility of 1%.

As should be expected, the power decreases if we lower the size of the test,
increase idiosyncratic risk by lowering the number of obligors in the portfolio,
shrink the available data history, or lower the default rate. The loss of power is
fairly small when the number of borrowers is 5,000 instead of 10,000. With
1,000 borrowers, the power is still above 75% in some cases. The same holds
when the chosen size of the test is 5% instead of 10%, or when the number of
years in the observed loss history is five instead of ten. With heterogeneous
default probabilities, the power decreases modestly.
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TABLE 3 Composition of heterogeneous portfolio

Rating Unconditional default probability (%) Number of borrowers

AAA 0.01 382
AA 0.02 590
A 0.06 2.256
BBB 0.18 3.792
BB 1.06 1.908
B 4.94 942
CCC 19.14 130



Is the documented power of the tests satisfactory? One of the most pressing
questions in parameterizing credit risk models is to choose an appropriate value
for the asset correlation. While the Basel Committee on Banking Supervision
(2001a) favors an asset correlation of 20%, calibration exercises (Gordy, 2000,
and Hamerle, Liebig and Rösch, 2002) typically lead to much lower correlation
estimates.14 Often, the estimates are smaller than 5%. In Table 2, the probability
of rejecting an asset correlation of 20%, if the correct one is 5%, ranges from
74% to 97%. Such rejection rates appear to be satisfactory.

Contrary to the base case, estimates of default probabilities will be noisy in
practice, and one might suspect that this reduces the power of detecting misspec-
ifications of the asset correlation. We therefore examine a case in which the risk
model not only falsely assumes an asset correlation of 20% but is also mis-
specified with respect to the default probabilities. The true default probabilities
are those of the heterogeneous portfolio from above (see Table 3). Under H0, we
underestimate the default probability by 50% for one half of the borrowers of
each rating class, and overestimate it by the same percentage for the other half.15

Recall that the test’s power equals 93% when the heterogeneous default proba-
bilities are correctly specified (see Table 2). When we introduce noise the power
decreases slightly to 90%. This suggests that the results presented above are
robust to the introduction of estimation error.

3.1.2 Alternative models differ in parameters other than the asset correlation
So far, we have illustrated the power of rejecting models that diverged from the
true model in their assumptions about asset correlations. In the following, we
present some results on the test’s power if other elements of the parameter space
are misestimated. We start by examining a situation in which the models to be
tested differ from the true model only with respect to the unconditional default
probability. As before the true default probability is 1%, while the default rates
assumed under the null hypotheses span from 0.2% to 2.4%. The other variables
are set as in the base case (uniform correlation of 5%, 10,000 borrowers per
year, and ten observations). The simulated power is presented in Table 4.

When comparing the power to the previous results, it is illustrative to com-
pare null hypotheses that produce similar errors in predicting extreme losses, eg,
the 99% quantile. The true model is the same in both setups. An asset correlation
of 5% and a default probability of 1.6% lead to roughly the same 99% quantile
as an asset correlation of 10% and a default probability of 1%. In the latter case,
the power is 44% (see Table 2), while it amounts to 74% in the former case.
Contrary to a false correlation assumption, missing the default probability also
leads to a wrong prediction of the mean default rate. Since the Berkowitz test
utilizes the entire distribution rather than focusing on extreme events, this
explains the observed differences in power.

Even if default probabilities and asset correlations are correctly specified, a
credit risk model can still be a poor predictor of credit losses. Lucas et al (2001)
and Frey and McNeil (2001) document that the distribution of the latent variable
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heavily influences the probability of extreme events. Until now we followed the
standard approach and assumed the latent variable to be normally distributed.
One piece of evidence against this assumption is presented in Gordy and
Heitfield (2001) and Löffler (2002), who fit Merton-style structural models to
empirical rating transitions and find that these are best replicated by fat-tailed
asset value distributions.

A general specification that allows for different degrees of tail-thickness is to
model the latent variables as following a t-distribution. Since the t-distribution is
a continuous mixture of normal distributions, where the mixing distribution is
the chi-squared, this can be achieved by transforming the asset value changes as
follows (see Frey and McNeil, 2001):

(9)

where ν denotes the degrees of freedom assumed for the t-distribution. The dis-
tribution approaches the normal as ν approaches infinity. A borrower defaults
when ∆ Ã′i < tν

–1(p), where p is the unconditional default probability and tν is the
cumulative t-distribution with ν degrees of freedom. For the simulation experi-
ments, we choose ν = ∞ to describe the true model, and vary the degrees of
freedom assumed under the null hypothesis. An example shall help to assess the
power statistics shown in Table 4. Fitting a t-distribution to empirical rating tran-

∆ ∆˜
˜

˜ , ˜ ~ ( )′ =A
w

A wi i
ν χ ν2
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TABLE 4 Power of Berkowitz test if H0 varies in default probability or asset value
distribution

Varying default probabilities Varying the asset value
under H0 distribution under H0

0.2 79 100 10 911 100
0.4 145 99.5 20 646 92.3
0.6 207 76.4 30 547 71.8
0.8 265 29.1 40 496 55.2
1.0% = true 321 12.6 50 463 44.5
1.2 376 22.8 60 441 37.3
1.4 428 48.3 70 426 32.5
1.6 481 73.8 80 413 28.9
1.8 531 89.9 90 404 26.2
2.0 581 96.9 100 395 24.1
2.2 630 99.1 200 361 16.6
2.4 678 99.8 ∞ = true 321 12.6

The true model is as in the base case (see Table 1). The models that are evaluated are identical to the
true model except for the unconditional default probability or the type of the asset value distribution.

Default
probability

under H0 (%)

99% quantile
of default

distribution Power (%)

Degrees of
freedom of t-
distribution
under H0

99% quantile
of default

distribution Power (%)



sition matrices provided by KMV, Moody’s and Standard & Poor’s, Löffler
(2002) obtains degrees of freedom parameters that are always below 11. This
could lead a risk manager to favor a t-distribution with 10 (or less) degrees of
freedom. If the normal assumption is correct, and there are ten years of credit
data to check whether a t-distribution with 10 degrees of freedom is appropriate,
the power is 100% Conclusions do not change when we look at the opposite
case in which the true asset value distribution is a t-distribution. If the true asset
value distribution is a t with ten degrees of freedom and we test the null hypo-
thesis that the asset value distribution is normal, the test’s power equals 99.6%
(all other parameters as in the base case).

Finally, we modify the base case by introducing autocorrelation into the time
series of the systematic factor Z̃ . In simulating the loss histories, we use the fol-
lowing autoregressive process for Z̃ i :

(10)

The choice of parameters is based on the study of Belkin, Suchower and Forest
(1998a), who fit such a process on rating transition matrices and obtain an auto-
correlation coefficient of 0.46. A credit risk model should incorporate such
autocorrelation, that is, take the current position in the credit cycle into account
when predicting default rates. Evaluators should thus be interested in testing
whether the prediction errors are indeed uncorrelated across time. As in
Berkowitz (2001), we augment the density function for the transformed losses zt
by allowing them to follow a first-order autoregressive process:

(11)

As the estimator for the autocorrelation coefficient r is downward biased in
small samples (cf. Quenouille, 1949 or Andrews, 1993), we first use Monte
Carlo simulations to identify the bias. If the null hypothesis is correct and there
are ten observations as in the base case, the median maximum likelihood estima-
tor of ρ equals –0.114. We therefore test the restrictions µ = 0, σ2 = 1 and ρ =
–0.114.6. The statistic is referred to the chi-squared distribution with three
degrees of freedom.

A simulation study, where we set all parameters (except for the autocorrela-
tion) as in the base case, produces the following result: if the factor is governed
by the process described in (10), but the null hypothesis assumes that there is no
autocorrelation, the probability of rejecting the null is 38%. The figure is rather
low, which is not surprising given that there are only ten time periods to estimate
the autocorrelation.
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Should one nevertheless routinely test for autocorrelation? To answer this
question, it is interesting to know whether testing for autocorrelation can actu-
ally decrease the power of the test. We use the base case setup, that is, a situation
where neither the true model nor the H0 models contain autocorrelated factors. If
the H0 posits an asset correlation of 10% (true being 5%), the power is 43% if
we do not test for autocorrelation. The figure drops to 35% once the test includes
the restriction ρ = –0.114. If one routinely tests for serial correlation, it might
therefore be advisable to conduct parallel tests that exclude serial correlation.

3.2 Multi-state models

In this section, we analyze the power of the Berkowitz test when applied to
credit risk models that incorporate migration and recovery rate uncertainty. We
take the heterogeneous portfolio from above (see Table 3). The probabilities of
rating transition are taken from Lando and Skodeberg (2002, Table 3). As
described in Lando and Skodeberg, the estimates are based on continuous rating
data from Moody’s over the period 1988–98.17 They are preferable to other
available estimates, which average transition frequencies observed within dis-
crete time intervals, and thus do not make efficient use of the data. We analyze
portfolios of simple, fixed-rate loans with an initial maturity of five years. The
yields necessary for loan valuation were taken from the CreditMetrics web site
on April 8, 2002.18 We use the yield spreads for bonds of US corporates, and the
yield on US treasuries. Required yields that are not provided on the web site
(four-year yields), are obtained through linear interpolation. Coupon rates are set
such that loans are initially valued at par. The conditional one-year ahead loan
values are computed using implied forward yields. The mean recovery rate mR is
set to 0.521, which equals the mean bank loan value in default for senior un-
secured loans in Gupton, Gates, and Carty (2000). The parameters describing
recovery rate uncertainty are taken from the estimates in Frye (2000): the volati-
lity of individual recovery rates s is set to 0.32; the correlation of recovery rates
is set to 2.89%, which corresponds to q = 0.17 in equation (3).

Figure 2 displays the power of the Berkowitz test for the multi-state case with
systematic recovery rate risk. As in the base case, the asset correlation of the true
model equals w2 = 5%. The null hypotheses are defined by changing the cor-
relation parameter w2 on the interval [0%, 20%]. The test’s power reaches
almost 100% if the null hypothesis specifies a zero asset correlation, and 68% if
the asset correlation under the null hypothesis is set to 20%. Comparing these
results with Table 2, it can be seen that incorporating migration and recovery
rate uncertainty reduces the test’s power. 

Since the test’s power depends on the difference between the correct loss dis-
tribution and the one under H0, a closer look at these distributions helps to
explain the results. We compare unexpected losses, which we define as the 1%
quantile of portfolio value minus expected portfolio value. In the multi-state
analysis, an asset correlation of 20% leads to an unexpected loss that is 1.7 times
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higher than the unexpected loss that is obtained with a 5% asset correlation. In
the two-state base case (see Section 3.1.1) the corresponding ratio is 3.0, which
means that misspecifications of the asset correlation have a much stronger
impact than in the multi-state case. In consequence, the power of the Berkowitz
test is lower in the multi-state case.

3.3 Testing cross-sectional predictions

Consider evaluating a model that assumes a uniform asset correlation across
obligors. Using the test procedure described above, the evaluator cannot reject
the validity of the model. However, she has some a-priori information indicating
that the true correlations differ across obligors. How could she incorporate this
information?

As an illustration we get back to two-state models, but change our base case
setup slightly. Instead of assuming a uniform asset correlation of 5% in the true
model, we split the portfolio into two equally sized sectors with intra-sector
asset correlations of 2% and 9%, respectively:

(12)
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FIGURE 2 Power of Berkowitz test in multi-state case with systematic recovery.
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The Berkowitz test is applied to the heterogeneous portfolio from Table 3. The one-year transition
matrix is taken from Lando and Skodeberg (2002,Table 3).The probability mass of the not-rated cate-
gory has been apportioned to the other rating classes according to their probability mass. Conditional
one-year ahead loan values are calculated based on yields on US treasuries and yield spreads for US
corporates taken from the CreditMetrics web site on 8 April 2002. All loans mature in five years.
Required yields that are not provided on the website are obtained through linear interpolation. Coupon
rates are set such that loans are initially valued at par. Recovery rates have a mean of 0.521 (cf. Gupton,
Gates, and Carty, 2000), a volatility of 0.32, and an average correlation of 2.89% (cf Frye, 2000).



We simulate 10-year default histories using this two-sector model and use the
Berkowitz test (8) to check whether we can reject a model that posits a uniform
asset correlation of 5%. With a size of 10%, the power is only 12% (Figure 3).
This result is due to the fact that the aggregate expected loss distributions of the
true model and the null hypothesis are almost identical, even though the sector
portfolio distributions differ.

If the evaluator conjectures that factor sensitivities differ across the two sec-
tors, she could form two subportfolios consisting of just one sector and proceed
as though she were to test default predictions for two different portfolios.
Applying the Berkowitz transformation to the sector defaults yields two series of
transformed default data zt . Since both sectors are subject to the same common
factor, actual losses will be contemporaneously correlated. Under the null, they
follow a bivariate standard normal distribution, which has the following log-
likelihood:

(13)

We obtain maximum likelihood estimators for the parameters µ1, µ2, σ1
2, σ2

2 and
ρ12 and construct a likelihood ratio statistic to jointly test the restrictions µ1 = 0,
µ2 = 0, σ1

2 = 1, σ2
2 = 1. Due to the short time series, the statistic is not exactly

chi-squared distributed with four degrees of freedom. Therefore, we simulate the
critical value corresponding to a test size of 10%.19

Applying this methodology to our example of a one-factor model with two
intra-sector correlations of 2% and 9%, ten years of data are sufficient to reject
the H0 of a uniform asset correlation of 5% in 95.7% of all cases. The reason for
this substantial improvement is that the correlation parameters are sufficiently
different from each other within each sector. We repeat the power calculations
for other null hypotheses, which differ in the assumption about the value of the
uniform asset correlation. The results are shown in Figure 3. Regardless of the
asset correlation assumed under H0, the power is close to 100% if the test is
based on sector defaults.

The example has shown that the Berkowitz procedure can be extended to test
cross-sectional predictions. Since we propose to base the test on judiciously cho-
sen subportfolios, there is no general rule for structuring an evaluation
procedure. However, we believe that the choice of subportfolios will often be
evident. If one wants to test whether a model is too parsimonious (as in the
example) one would split the portfolio into subsets one believes to be different.
Similarly, the choice will arise naturally once evaluators have defined a bench-
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mark model for evaluation purposes. In such a case, evaluators would determine
the portfolio-split such that the differences between the benchmark model and
the model under analysis are maximized. If the model default probabilities differ
from the benchmark ones, for example, one could form two subportfolios
according to whether the difference is above or below the median difference. If a
model departs from the benchmark in several dimensions, the split would aim at
maximizing differences in predicted subportfolio risk.

By extending the bivariate likelihood (13) to the M-variate case, such tests can
be based on M subportfolios instead on just two as in the example. Of course,
there is a limit to the number of subportfolios one can form because the number
of parameters in the likelihood function (M(M – 1) ⁄ 2 + 2M) grows faster than
the number of usable observations (M × T ).

One possible way of exploiting the cross-section without needing a-priori
information is to utilize the idea of Lopez and Saidenberg (2000), and apply the
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FIGURE 3 Power of Berkowitz test when including cross-sectional information
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The setup is identical to the base case (see Table 1) except for the asset correlation within the true
model. Instead of a uniform asset correlation of 5% there are two equally sized sectors with intra-sector
asset correlations of 2% and 9%, respectively. The grey shaded area shows the power when the
Berkowitz test is based on aggregate portfolio defaults. The dotted line depicts the power when the
Berkowitz procedure is extended to assess the accuracy of sector defaults. Due to the short time
series, the likelihood ratio test statistic is not chi-squared distributed, so we simulated the critical value
corresponding to a size of 10%.



Berkowitz procedure to randomly drawn portfolio subsets. There are two prob-
lems associated with such an approach. First, we have to account for
cross-sectional correlations, which imposes a limit on the number of subport-
folios we can draw. Second, drawing random subportfolios means that we hardly
ever get extreme subportfolio compositions. If there are two sectors, and we
draw a large number of reasonably large subportfolios (say, with 2,000 borrow-
ers each), the probability that we obtain at least one subportfolio that consists
only of borrowers of one sector is close to zero.20 As the above example has
shown, such extreme portfolio compositions may have the greatest informational
value for the purpose of model evaluation. Even if we obtained some extreme
portfolio compositions through resampling, their informational value would be
lost by averaging across all subportfolios.

4 Concluding remarks

We have described procedures for evaluating parameterizations of asset value
models. Because of the structural similarities of current generation credit risk
models, we are confident that our results apply to other credit risk models as
well. Monte Carlo simulations show that the power of the tests is satisfactory.
With ten years of annual data, some of the questions currently debated by credit
risk managers can be resolved with a probability larger than 90%. In particular,
we showed that misspecifications in asset correlations can be identified by the
Berkowitz procedure. Results are largely robust to portfolio size and composi-
tion. However, the test’s power is significantly better for two-state models than
for multi-state models. Whereas the test’s power in identifying a misspecified
asset value distribution is considerable, incorrect assumptions about the autocor-
relation of the systematic factor are not easily detected.

An application of the test procedure could, for example, be to validate the
assumptions underlying the new capital adequacy framework (Basel Committee
on Banking Supervision, 2001a, b). Since many banks have insufficient records
of credit losses, such a validation cannot yet be performed separately for each
bank. However, the data that is at hand can be used to check whether the
assumptions are adequate on average. In addition, regulators could encourage
banks with sufficient loss records to test whether the Basel assumptions are con-
sistent with them. If not, these banks could be allowed to change the parameters
which determine capital requirements. To perform such an exercise, as few as
five years of data can be sufficient. If a bank correctly specifies the asset cor-
relation to be 5%, whereas Basel prescribes a value of 15%, for example,
simulations suggest that the Basel value could be rejected with a probability
larger than 50%. Of course, the application of evaluation procedures is not
restricted to the regulatory domain. Many banks allocate economic capital based
on credit portfolio risk models. Evaluation procedures described in this paper
can help to confirm, or improve the chosen model specification. Using Monte
Carlo simulations, a bank can assess the power of the tests when applied to its
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specific data set, and then decide how much weight the results should receive in
the specification process.

A test should meet other criteria than a large power, for instance ease of
implementation and general applicability. The tests are computationally simple.
They require only the predicted cumulative loss distribution and some elemen-
tary transformations. The simplest form of the test, which is based only on
aggregate portfolio losses, provides a benchmark that is generally applicable. To
exploit additional information contained in the cross-section of defaults, we pro-
pose to test the model’s prediction for judiciously chosen subportfolios. The
subportfolio choice can, for example, be based on a benchmark model favored
by the evaluators. Note, too, that the test procedures can be directly applied to
models that include any form of risk, including spread risk, interest rate risk and
other market risks.

A possible criticism is that the tests are based on the entire range of the distri-
bution, whereas risk managers and regulators are mainly concerned about the
probability of extreme events. Why should one thus want to rely on the tests?
First, data problems can be so severe that there is no alternative. By using a cen-
sored likelihood, the Berkowitz (2001) procedure can be based on the tail of the
distribution only. However, if the data set is limited, it may not contain the
extreme events necessary to conduct such a test. Second, differences in the tails
of two distributions will often go along with predictable differences in the rest of
the distribution. If default correlation is increased, for example, the probability
of catastrophe losses rises, but so does the probability of very small losses. A
good example in point is the choice of the distribution of the latent variables.
Choosing a fat-tailed distribution can have substantial impacts on the probability
of extreme credit events. As shown in the paper, ten years of default data give
good guidance on choosing the distribution even though such a small sample
will typically not contain the extreme events risk managers are concerned about.

1. A useful summary of available credit risk models is given in Crouhy, Galai and Mark
(2000).

2. Diebold, Gunter and Tay (1998) propose to use the probability integral transform to trans-
form observed data into a series of iid U(0,1) distributed variables under the true model.
The independence assumption and the uniformity assumption can be tested together or
separately. The authors argue for a separate test and graphical methods in order to identify
the source of a possible deviation.

3. See Gupton, Finger and Bhatia (1997) for a description of CreditMetrics, and Crouhy,
Galai and Mark (2000) for a comparison of the KMV and CreditMetrics models.

4. Basel Committee on Banking Supervision (2001a), S.36.

5. Cf. Finger (1998), Koyluoglu and Hickman (1998), and Gordy (2000).

6. The extension to a multi-factor model is straightforward.

7. Cf. Finger (1999), Koyluoglu and Hickman (1998), and Belkin, Suchower and Forest
(1998b) for applications of this model.
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8. Burgisser, Kurth, and Wagner (2001) show how systematic recovery risk can be modeled
in the CreditRisk+ framework.

9. Hamerle, Liebig, and Rösch (2002)

10. Simple quantile tests are of little use if the sample size is small. This is intuitive for the
case where the H0 distribution is riskier than the true one. The number of violations will
be smaller than expected; in the extreme, there will be no violation at all. With only ten
observations, however, observing no quantile violation is not sufficient evidence (at the
10% significance level) for rejecting the H0 if one tests for violations of the 90%, 95% or
99% quantiles.

11. We use the term “observed losses” to denote the dollar amount of losses. In a two-state
credit risk model, this amount coincides with the number of defaults provided all expo-
sures equal one dollar and recovery is zero. Equivalently, one could set yt equal to
percentage portfolio losses.

12. See Berkowitz (2001) for a proof.

13. One could presume that the power of the test could be increased by testing for normality
as well. To check whether this is indeed the case, we applied the Doornik and Hansen
(1994) normality test, a test based on transformed statistics of skewness and kurtosis to
improve small-sample performance, to the transformed series zt, and simulated its power.
In the base case, the power barely exceeded the size if the null hypotheses were defined
by choosing an asset correlation from the interval [0%, 20%].

14. Recently, the Basel Committee on Banking Supervision (2001b) proposed to use asset
correlations between 10% and 20%.

15. For example, the H0 default probabilities for obligors rated BB are 0.53% or 1.59%
instead of 1.06%.

16. In practical applications, one will have to determine the bias associated with the number
of observations at hand. Using the mean bias (–0.108) instead of the median for defining
the restriction does not change the results significantly.

17. We shifted the probability mass of the not-rated category to the other rating classes
according to their probability mass.

18. The data are available on request.

19. We set the H0 model equal to the true model, simulate 1,000,000 likelihood ratio tests, and
choose the critical value to be the 90% quantile of the simulated test statistics.

20. Consider a portfolio of 10,000 obligors, one half of which belongs to one sector, the other
half to another. Drawing a subportfolio of 2,000 obligors without replacement, the proba-
bility that all obligors belong to single sector is below 10–300. The probability of obtaining
an even mixture of sectors is 2%.
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