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The market for inflation-linked derivatives has grown rapidly in 
recent years. Inflation is now regarded as an independent as-
set class. Actively traded inflation derivatives include standard 

zero-coupon inflation swaps, as well as more complicated products 
such as period-on-period inflation swaps (Mercurio, 2005), inflation 
caps (Mercurio, 2005), inflation swaptions (Kerkhof, 2005) and fu-
tures contracts written on inflation (Crosby, 2007).

Consider a standard zero-coupon inflation swap with maturity 
T
M
, fixed rate K and notional amount N, which we enter into at 

time zero. Let X
t
 denote the spot consumer price index (CPI) at 

time t. The payout at time T
M
 of the standard zero-coupon infla-

tion swap is N(XTM
/X

0
N K TM . Notice that the time 

T
M
 at which the CPI is measured to specify the payout agrees with 

the time at which the payment takes place. While this is the usual 
situation, often in practice the payment is delayed until some later 
time T

N
T
M
. This delay is not just the standard two-day spot set-

tlement lag, but can be a period of a few weeks, a few months or 
even several years. We will refer to such inflation swaps as ‘inflation 
swaps with delayed payments’.

To see how such inflation swaps have an important economic 
rationale, consider a commercial property company. Suppose it has 
debt in the form of fixed-rate loans. It receives rents from its ten-
ants that it wants to pay out as the inflation-linked leg of an infla-
tion swap. It will receive fixed payments on the inflation swap, 
which is used to pay its fixed-rate debt. Often rents will remain 
constant for a period of five years before being reviewed. They will 
then be revised upwards to reflect inflation over those intervening 
five years. So, for example, suppose the commercial property com-
pany wanted to enter into an inflation swap trade, in which it paid 

inflation-linked cashflows and received fixed cashflows. The com-
pany wants to hedge the cashflows that it will receive from its ten-
ants in years six, seven, eight, nine and 10. A suitable inflation swap 
trade would be a strip of five zero-coupon inflation swaps, where 
the payouts of the five zero-coupon swaps are (we write only the 
inflation-linked leg with unit notional) as follows: at the end of 
year six, the company pays X

5
/X

0
. At the end of year seven, it 

again pays X
5
/X

0
. Likewise, it pays X

5
/X

0
 at the end of years 

eight, nine and 10.
We see that these are zero-coupon inflation swaps with delayed 

payment, with the delay on the final strip being five years. Period-
on-period swaps with delayed payments are also traded in the mar-
kets. We will provide formulas for both these types of inflation 
swap by calculating the relevant convexity adjustments. Note that 
the issue of delayed payments should not be confused with the 
issue of indexation lag. Indexation lag refers to the fact that the 
value of the CPI in the denominator of the inflation-linked term in 
the payout is, in fact, the CPI published (typically) a few weeks 
earlier, which, in turn, was calculated from consumer prices 
observed a few weeks before that. This is a different issue (although 
it would be possible to relate the two), and we refer the reader to 
Kerkhof (2005) and Li (2007).

Limited price indexation (LPI) swaps are a type of exotic infla-
tion derivative and are very common in the UK, owing to the rules 
by which UK pension funds are governed. We will see that the con-
vexity adjustments required to value inflation swaps with delayed 
payments have a further application in the valuation of LPI swaps.

This article is structured as follows. First, we introduce the 
dynamics of nominal and real zero-coupon bond prices and the 
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spot CPI. Then we state the convexity adjustments required to 
value zero-coupon inflation swaps with delayed payments and 
period-on-period inflation swaps with delayed payments. To our 
best knowledge, these results, in the context of a multi-factor 
Hughston (1998) and Jarrow & Yildirim (2003) model, have not 
appeared before, although some similar results (in the context of a 
two-factor Hull-White type model) are in Dodgson & Kainth 
(2006). These results are then applied to the valuation of LPI 
swaps, aided by the quasi-analytic methodology of Ryten (2007). 
A number of examples and comparisons are then given, and we fin-
ish with a brief concluding remark. Appendix A contains proofs of 
the convexity adjustment formulas.

Models for bond prices and the spot CPI
We model the market with the specification of a probability space 
( , F, Q  with filtration {F

t
}

0 t < 
 generated by a multi-dimen-

sional Brownian motion. The probability measure Q denotes the 
risk-neutral measure, and market prices and other information-
providing processes are adapted to {F

t
}. Throughout the article, 

we assume the absence of arbitrage and the existence of a pricing 
kernel. These conditions ensure the existence of a unique preferred 
pricing measure Q. We let E

t
[–] denote the expectation in Q con-

ditional on {F
t
}.

We denote calendar time by t; time t = 0 will denote the initial 
time. Let {rN

t
} and {rR

t
} denote, respectively, the (continuously 

compounded) risk-free nominal and real short-rate processes. Let 
{PN

tT
} and {PR

tT
} denote, respectively, the price process of a nominal 

and real zero-coupon bond maturing at T. The spot CPI at time t
is denoted by X

t
.

A key observation for pricing inflation derivatives is that, for any 
times t and T

M
, t T

M
, we have (Hughston, 1998):

XtPtTM
R E t XTM exp rs

N ds
t

TM
(1)

This follows from the fact that the right-hand side of (1) is the 
price at time t of an index-linked bond, which pays the amount XTM

at time T
M
. Dividing it by X

t
, we obtain the value in real terms of a 

bond that pays one unit of goods and services at time T
M
. Mercu-

rio (2005) uses this relation to value standard zero-coupon infla-
tion swaps, and shows how, given the fixed rates quoted in the 
markets for these swaps, the term structure of real discount factors 
can be obtained.

Now we introduce the models for the dynamical equations satis-
fied by nominal zero-coupon bond prices, real zero-coupon bond 
prices and the spot CPI, within the multi-factor version of the 
Hughston (1998) and Jarrow & Yildirim (2003) model. These are 
given by:

dPtT
N

PtT
N

rt
N dt ktT

N dzkt
N

k 1

KN

(2)

dPtT
R

PtT
R

rt
R

k
RX

t
X

ktT
R

k 1

KR

dt ktT
R dzkt

R

k 1

KR

(3)

and:

dXt
Xt

rt
N rt

R dt t
X dzt

X (4)

Here, K
N
 and K

R
 are the number of Brownian motions driving nomi-

nal and real zero-coupon bond prices, respectively; and {dzN
kt
}k KN

,
{dzR

kt
}k KR

 and {dzX
t
} denote standard Q Brownian increments. Fur-

thermore, { N
ktT

}k KN
 and { R

ktT
}k KR

 are volatility terms, which are 
assumed to be deterministic, satisfying N

kTT
 = 0, and { X

t
} is the spot 

CPI volatility, which we also assume to be deterministic. We denote 
correlations (all assumed constant) by  with appropriate subscripts: 
Corr(dzN

jt
, dzN

kt jk
NNdt, Corr(dzR

jt
, dzR

kt jk
RRdt, Corr(dzX

t
, dzN

kt k
NXdt,

Corr(dzX
t
, dzR

jt j
RXdt and Corr(dzN

jt
, dzR

kt jk
NRdt.

LPI swaps
Here, we will provide a valuation formula for LPI swaps. Before 
discussing LPI swaps, we state two preliminary propositions, the 
proofs of which are in Appendix A. We will use them to value LPI 
swaps. They can also be used to value zero-coupon inflation swaps 
with delayed payments and period-on-period inflation swaps with 
delayed payments.

Proposition 1. Given the assumptions in the previous section, for 
any times t and T

N
, 0 t T

M
T
N
, the following relation holds:

E t XTM exp rs
N ds

t

TN

XtPtTM
R

PtTN
N

PtTM
N
exp Cs TM ,TN ds

t

TM
(5)

where:

Cs TM ,TN

ksTN

N
ksTM

N
kj
NR

jsTM

R
kj
NN

jsTM

N

j 1

KN

j 1

KR

k 1

KN

ksTN

N
ksTM

N
k
NX

s
X

k 1

KN

(6)

When T
M
 = T

N
, it is straightforward to verify that C

s
(T

M
, T

N
,

in which case equation (5) agrees with equation (1).
Proposition 2. Given the assumptions of the previous section, we 

have, for 0 t < T
i

 < T
i
TNi

:

E t
XTi
XTi 1

exp rs
N ds

t

TN i

PtTi 1

N
PtTN i
N

PtTi
N

PtTi
R

PtTi 1

R
exp Cs Ti ,TNi

ds
Ti 1

Ti

As Ti 1,Ti Bs Ti 1,Ti ,TNi
ds

t

Ti 1

         

(7)

where C
s
(T

i
, TNi

 is given by (6) and where:

As Ti 1,Ti jsTi

R
jsTi 1

R

j 1

KR

kj
NR

ksTi 1

N
kj
RR

ksTi 1

R

k 1

KR

k 1

KN

ksTi 1

R
ksTi

R
k
RX

s
X

k 1

KR
(8)
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and:

Bs Ti 1,Ti ,TNi kj
NN

j 1

KN

k 1

KN

ksTi 1

N
ksTi

N
jsTN i

N
jsTi

N

kj
NR

j 1

KR

k 1

KN

jsTi

R
jsTi 1

R
ksTN i

N
ksTi

N
(9)

We now proceed to the valuation of LPI swaps.
Suppose that today, at time zero, we enter into an LPI swap. The 

LPI swap is defined via a set of fixed dates T
0
 < T  < T

2
 < ··· < T

M
 < 

T
M
, where T

0
 = 0. The payment of the payout of the swap occurs at 

time T *, where T * = T
M
. The payout of the inflation-linked leg of 

the swap at time T * is given by:

min max
XTi
XTi 1

,1 F ,1 C
i 1

M

where C and F are constants with C F. In practice, F is often zero 
but we will assume in the following that C and F can take on any 
values (positive, negative or zero) provided that C F. We see that 
the role of the constants C and F is to cap and floor the period-on-
period inflation rate over each period.

When C =  and F  the product ‘telescopes’ and the LPI 
swap has the same payout as a zero-coupon inflation swap. How-
ever, when C and F are finite and when M , we need to price a 
swap whose payout is path-dependent. For typical values of M
(between five and 40, say), the only feasible methodology to price 
LPI swaps is by Monte Carlo simulation, but this is computation-
ally intensive. Hence, it would be desirable to have a fast, even if 
approximate, quasi-analytic methodology to price them. Such a 
methodology, based on the idea of common-factor representa-
tion, is proposed in Ryten (2007). Note, however, that Ryten’s 
model set-up is rather different from ours. We will apply Ryten’s 
idea, in order to value LPI swaps, within the set-up of our multi-
factor version of the Hughston (1998) and Jarrow & Yildirim 
(2003) model.

Let us begin by introducing some additional notation. We let 
Q

T* denote the probability measure defined with respect to the 
numeraire that is the zero-coupon bond maturing at time T *. Sim-
ilarly, we let E

t
T*  denote the expectation with respect to the 

measure Q
T* conditional on {F

t
}. Suppose we have a T

M
 year LPI 

swap with M periods. Let X
i
 denote XTi

/XTi
 for i M. In 

Li (2007), it is shown that lnX
i
 for each i M is normally 

distributed in our model, and that we can calculate the covariance 
matrix cov(lnX

i
, lnX

j
 for each i, j. In general, none of the elements 

of this covariance matrix vanish, because lnX
i
 is not independent 

of lnX
j
 for any i, j. This lack of independence complicates the prob-

lem of pricing an LPI swap. The idea of Ryten (see also Jäckel, 
2004) is to replace the covariance matrix cov(lnX

i
, lnX

j
 for each i,

j by another matrix, which is close to the actual correlation matrix 
in some sense, but in which the off-diagonal elements have a sim-
ple structure. This is achieved by generating all the co-dependence 
between lnX

i
 and lnX

j
 through a single common factor (in fact, 

Ryten also considers the case of two common factors, but we will, 
for the sake of brevity, only consider one).

It is easy to show (Li, 2007) that lnX
i
 = lnXTi

/lnXTi
, i

M, are distributed as multivariate normal random variables in the 
measure Q

T*. That is to say, lnX
i
 is Gaussian with deterministic 

drift and volatility under Q
T*. Hence, we can write X

i
 in the form 

X
i
 = exp(a

i
z
i
b
i
, where z

i
 ~ N ; cov(lnX

i
, lnX

j
z
i
, z

j
a
i
a
j
;

and E
t
[X

i
] = exp(b

i
½a2

i
.

The key idea of Ryten (2007) is to replace X
i
 by X̂

i
 defined via:

X̂i exp bi ai âiw 1 âi
2

i

where the system {w, 
M
} is a family of independent N

variates. The variates  X̂1, ... ,  X̂M
 represent the variates X X

M

via one common factor w and additional individual idiosyncratic 
random variables {

i
}
i M

. Note that the common factor w is an 
abstract factor and does not necessarily correspond to any market 
observable.

From Ryten (2007), which in turn references Jäckel (2004), we 
know that when M  3 we can approximate  â

k
 by:

âk exp
1

M 2
kk

kii 1

M

2 M 1

where 
–
k
k
 = M

i k
ln[cov(lnX

i
, lnX

k
k M. In the cases for 

which M  or M = 2, we do not need an approximation. Indeed, if 
M  then we have (trivially) â ; likewise if M = 2, then we have 
(from Cholesky decomposition) â  and â

2
 = Corr(lnX , lnX

2
.

Note that the relations E
0
T*[X̂

i
] = E

0
T*[X

i
] and var[lnX̂

i
] = var [lnX

i
]

are valid for all i M and for all values of M. But if M  3,
then cov(X̂

i
,  X̂

j
) is only an approximation to cov(X

i
, X

j
 when i j.

We now apply Ryten’s idea to valuing LPI swaps. By changing 
the measure to Q

T* and using Girsanov’s theorem, the price at time 
T

0
 = 0 of the inflation-linked leg of the LPI swap is:

E0 exp rs
N ds

0

T *

min max
XTi
XTi 1

,1 F ,1 C
i 1

M

P
0T *
N E0T

*

min max
XTi
XTi 1

,1 F ,1 C
i 1

M

P
0T *
N E0T

*

min max X̂i ,1 F ,1 C
i 1

M

P
0T *
N E0T

*

E0T
*

min max X̂i ,1 F ,1 C
i 1

M

w

P
0T *
N E0T

*

E0T
*

min max X̂i ,1 F ,1 C
i 1

M

w

(10)

By assumption the random variables 
i
 are independent, and con-

sequently, conditional on w, the variates  X̂
i
 are also independent, 

that is, cov(X̂
i
, X̂

j
w , when i j. Therefore, we see that the 

conditional expectation of the product in the last but one line of 
equation (10) becomes a product of conditional expectations in the 
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last line. We have used  (approximately equals) in the third line of 
equation (10), because the variates  X̂

i
 are, in general (that is, when 

M  3), only an approximate representation of the variates X
i
 for i

M.
To evaluate equation (10), we need to calculate the Q

T*-expec-
tation of X

i
 and the covariance matrix cov(lnX

i
, lnX

j
. The latter is 

shown in Li (2007) to be given by:

cov ln Xi , ln X j

cov ksTi

R
ksTi 1

R dzks
R

psTi

N
psTi 1

N dzps
N ,

p 1

KN

k 1

KR

0

Ti 1

ksT j

R
ksT j 1

R dzks
R

psT j

N
psT j 1

N dzps
N

p 1

KN

k 1

KR

ds

cov s
X dzs

X
ksTi

R dzks
R

psTi

N dzps
N ,

p 1

KN

k 1

KR

Ti 1

Ti

ksT j

R
ksT j 1

R dzks
R

psT j

N
psT j 1

N dzps
N

p 1

KN

k 1

KR

ds

when j > i, whereas when j = i we have:

var ln Xi ln Xi

2

var ksTi

R
ksTi 1

R dzks
R

psTi

N
psTi 1

N dzps
N

p 1

KN

k 1

KR

ds

0

Ti 1

var s
X dzs

X
ksTi

R dzks
R

psTi

N dzps
N

p 1

KN

k 1

KR

ds
Ti 1

Ti

The former can also be calculated since it follows from the Girsanov 
theorem that the Q

T*-expectation of X
i
 is:

E0T
* XTi
XTi 1

1

P
0T *
N
E0 exp rs

N ds
0

T * XTi
XTi 1

(11)

The Q
T*-expectation of X

i
 can then be evaluated explicitly by use 

of propositions 1 and 2. Specifically, when i , we find, since T
0
 = 

0, that (11) implies:

E0T
*

Xi[ ] = P0T1
R

P0T1
N
exp Cs T1,T

*( )ds0

T1∫( )
  

(12)

whereas when i  we obtain:

E0T
*

Xi
P0Ti 1

N

P0Ti
N

P0Ti
R

P0Ti 1

R
exp Cs Ti ,T

* ds
Ti 1

Ti

As Ti 1,Ti Bs Ti 1,Ti ,T
* ds

0

Ti 1

(13)

Furthermore, since X
i
 is lognormal, we can use the standard result 

that if we denote by lnXi
 and 2

lnXi
 the mean and variance of lnX

i
, then 

E
0
T*[X

i
] = exp( lnXi

½ 2
lnXi

 for i M. Hence we obtain the 
expectation of lnX

i
: lnXi

 = ln(E
0
T*[X

i
½ 2

lnXi
.

Now we can use the following well-known result: if X ~ N (
X
,

2
X
W ~ N , and 

XW
 is the correlation between X and W, then X

| (W = w  is normally distributed and, furthermore, E[X | W = w] = 

X XW X
w and var[X | W = w] = 2

X
2
XW

.
We can calculate the correlation between lnX̂

i
 and the common 

factor w. Indeed, since lnX̂
i
 is normally distributed with variance a2

i
,

and since

cov ln X̂i ,w cov ai âiw 1 âi
2

i ,w aiâi

we deduce that the correlation between lnX̂
i
 and w is  â

i
 for each i = 

M. Now we recall that E
0
T*[lnX̂

i
] = E

0
T*[lnX

i
] = lnXi

and that 
var[lnX̂

i
] = var[lnX

i
] = 2

lnXi
. Then using the result above we get:

E0T
*

ln X̂i w ln Xi
âi ln Xi

w

i
2 var ln X̂i w ln Xi

2 1 âi
2

and:

Fi E0T
*

X̂i w exp ln Xi
âi ln Xi

w 1
2 i

2

for i M.
Finally, equation (10) becomes:

  

P
0T *
N E0T

*

Fi Call Fi ,1 C , i
2 Put Fi ,1 F, i

2

i 1

M

   

(14)

where Call(F̄
i

C, ¯ 2
i

 and Put(F̄
i

F, ¯ 2
i

 are, respectively, the 
undiscounted prices of a call option with strike C and a put 
option with strike F, in the Black (1976) formula, when the 
forward price is F̄

i
 and the integrated variance is ¯ 2

i
. Note that each 

term in the product in equation (14) depends on the common factor 
w through F̄

i
 and  ¯ 2

i
, and w has a standard normal N  distribu-

tion. Hence, the price of the inflation-linked leg of the LPI swap at 
time zero (note that when M  3, it is only an approximation) is:

P
0T *
N 1

2
exp

w2

2

Fi Call Fi ,1 C , i
2 Put Fi ,1 F, i

2 dw
i 1

M

It follows that we can value LPI swaps with just a single numerical 
integration.

Numerical examples
We now examine some numerical examples. There are different 
forms that the volatility functions N

ktT
 and R

jtT
 can take, but here we 

will consider the extended Vasicek form, in which we assume:

ktT
N k

N

k
N
1 e k

N T t , ktT
R k

R

k
R
1 e k

R T t (15)

where, for each k, N
k
, R

k
, N

k
 and R

k
 are positive constants.

We will use the model parameters estimated for sterling in Li 
(2007). To simplify parameter estimation, we assume that real 
zero-coupon bond prices are driven by a single Brownian motion 
so that K

R
 in equation (3). In addition, we assume that the 

Cutting Nov08.indd   73 15/11/08   03:12:44



Cutting edge | Inflation

November 200856

volatility of the spot CPI is constant – that is, X
t
 = X. We assume 

that there are two Brownian motions driving nominal zero-cou-
pon bond prices, so that K

N
 = 2. This assumption adds nothing to 

the complexity of the calibration, since the associated parameters 
can be (and were) obtained by calibrating to the market prices of 
sterling vanilla interest rate swaptions (Li, 2007). The estimated 
values of the parameters are:

1
N 0.00649825 1

N 0.06494565

2
N 0.0063321172 2

N 0.00001557535

1
R 0.006093904 1

R 0.032193009
X 0.0104000 12

NN 0.46296278

1
RX 0.03781752 11

NR
21
NR 0.518100

1
NX

2
NX 0.018398113

We will use these parameters to give some numerical examples and 

comparisons for inflation swaps with different swap tenors and pay-
ment times.

Example 1: the effect of the convexity adjustment on the fixed 
rate for zero-coupon inflation swaps. Figure 1 shows the fixed rate 
K on zero-coupon inflation swaps, with a payment delay of five 
years, for swaps of different tenors from five years to 25 years. The 
interest rate (both nominal and real) yield curves were the sterling 
market implied rates as of June 2007 (see Appendix B for the set of 
market data). The volatility and correlation parameters were as 
above. The fixed rate on the swaps when we evaluate the convexity 
adjustment, using proposition 1, is always lower than the fixed rate 
we would obtain on the swaps if we naively assumed that no con-
vexity adjustment was necessary. Furthermore, the difference 
increases with increasing swap tenor. At 25 years – that is, when T

M

= 25 and T
N
 = 30 – the difference is more than 0.065%, which is 

significant from a trader’s perspective, as the bid-offer spread in 
the market, for zero-coupon inflation swaps, is approximately 
0.03% or sometimes even less.

Some examples of period-on-period inflation swaps are provided 

K

2.90

2.95

3.00

3.05

3.10

3.15

3.20

Maturity of zero-coupon inflation swap (years)

If assumed with no convexity adjustment
With convexity adjustment

%

5 10 15 20 25

2.1

2.2

2.3

2.4

2.5

2.6

Maturity of LPI swap (years)

QA (0,3)

MC (0,3)

QA (1,4)

MC (1,4)

QA (0,5)

MC (0,5)

%

1 2 5 10 15 20 25 30

   Price Price

    Monte Ryten Imp. rate Imp. rate Diff.

Cap Floor Std. error Carlo (QA) MC (%) QA (%) rates (%)

0.03 0 1.62E-05 0.493509 0.491246 2.19897 2.18018 0.01879

0.03 0.02 1.87E-05 0.530458 0.529970 2.49455 2.49077 0.00378

0.032 0.01 1.69E-05 0.509992 0.508136 2.33336 2.31844 0.01492

0.035 0.005 1.66E-05 0.514297 0.511382 2.36778 2.34451 0.02327

0.04 0.01 1.71E-05 0.531668 0.528436 2.50389 2.47889 0.02500

0.045 0.0175 1.82E-05 0.557735 0.555077 2.70033 2.68071 0.01962

0.0475 0.0025 1.66E-05 0.533227 0.528129 2.51590 2.47651 0.03939

0.05 0 1.65E-05 0.533657 0.528121 2.51920 2.47645 0.04275

0.05 0.005 1.67E-05 0.536505 0.531414 2.54103 2.50193 0.03910

0.06 0 1.65E-05 0.536619 0.530530 2.54190 2.49511 0.04680

0.12 –0.08 1.63E-05 0.535254 0.528384 2.53145 2.47849 0.05297

    Price Price

    Monte Ryten Imp. rate Imp. rate Diff.

Cap Floor Std. error Carlo (QA) MC (%) QA (%) rates (%)

0.03 0 7.08E-06 0.760519 0.760461 2.28825 2.28746 0.00079

0.03 0.02 7.33E-06 0.777059 0.777044 2.50856 2.50836 0.00020

0.032 0.01 7.15E-06 0.767780 0.767724 2.38549 2.38475 0.00075

0.035 0.005 7.15E-06 0.770922 0.770840 2.42731 2.42622 0.00110

0.04 0.01 7.21E-06 0.778157 0.778063 2.52303 2.52179 0.00123

0.045 0.0175 7.33E-06 0.789247 0.789174 2.66821 2.66727 0.00094

0.0475 0.0025 7.21E-06 0.778593 0.778464 2.52878 2.52708 0.00170

0.05 0 7.21E-06 0.778669 0.778535 2.52978 2.52801 0.00177

0.05 0.005 7.21E-06 0.779410 0.779282 2.53953 2.53785 0.00169

0.06 0 7.21E-06 0.779061 0.778922 2.53493 2.53311 0.00183

0.12 –0.08 7.21E-06 0.778796 0.778654 2.53145 2.52957 0.00188
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in Li (2007), so here, in examples 2 and 3, we will give some exam-
ples of the prices of LPI swaps, again using the volatility and cor-
relation parameters above. For the purposes of these illustrations, 
we assumed, for both the examples below, that the interest rate 
(both nominal and real) yield curves were initially flat and that 
nominal interest rates to all maturities were 0.05 and real interest 
rates to all maturities were 0.02 – that is, we assumed PN

0T
 = 

T  and PR
0T

T . We used Monte Carlo simula-
tion with 130 million runs (65 million runs plus 65 million anti-
thetic runs) to test and benchmark the accuracy of our application 
of the Ryten methodology.

Example 2: LPI swaps with floors and caps at (0%, 3%), (0%, 
5%) and (1%, 4%). Here we consider three different combinations 
of floors and caps (which are commonly traded in the market), 
namely (0%, 3%), (0%, 5%) and (1%, 4%). For all three combina-
tions, we consider LPI swaps where each period is equal to one 
year, and the number of periods varies from one period, through 
two, five, 10, 15, 20, 25 and 30 periods, and hence the maturities 
of the LPI swaps varied from one year to 30 years. We see from 
figure 2 that the fixed rates obtained from the quasi-analytical 
methodology of Ryten (QA) are very close to those obtained from 
Monte Carlo (MC) simulation for shorter maturities (as explained 
above, the Ryten methodology is, in fact, essentially exact for M
2). However, the differences do increase for LPI swaps with more 
periods.

Example 3: LPI swaps with maturities of 10 years and 25 years.
Here we consider 11 different combinations of floors and caps, as 
shown in table A. We consider LPI swaps whose maturities were 10 
years and 25 years. Again, each period is equal to one year. We 
know that the Ryten methodology is essentially exact when M  2.
However, we see for the LPI swaps with 10 years’ maturity and 25 
years’ maturity the level of approximation involved when M  3. As 
a rough guide, the bid-offer spread in the market for LPI swaps is 
approximately 0.06% (expressed as the fixed rate on the swap). For 
the LPI swaps with 10 years’ maturity, the maximum difference 
(table A, eighth column) between the fixed rates implied by the 
Monte Carlo results (sixth column) and the Ryten methodology 
(seventh column) is less than 0.0019%, which implies very accurate 
pricing, as it is less than 1/30th of the typical bid-offer spread. For 
the LPI swaps with 25 years’ maturity, the accuracy does deterio-
rate somewhat. The maximum difference in the fixed rates is 
approximately 0.053%, which is close to the bid-offer spread.

Having given some examples of the valuation of LPI swaps, we 
can make one further comment about the accuracy of the quasi-
analytical methodology. In tables A and B, we observe that the 
accuracy deteriorates when the cap level is high and the floor level 
is low. This might initially seem surprising, since in the limiting 
case that C =  and F , the LPI swaps become the same as 
standard zero-coupon swaps. However, the reason for the deterio-
ration in accuracy is that the quasi-analytical methodology approx-
imates the correlation structure. Although (in the notation of the 
previous section) it is true that E

0
T*[X̂

i
] = E

0
T*[X

i
] for all i, and it is 

also true that E
0
T*[ M

i
X
i
] = E

0
T*[XTM

/X
0
] = PR

0TM
 = PR

0T*
, the price of a 

standard zero-coupon swap, the approximation of the correlation 
structure means that E

0
T*[ M

i
X̂
i
] does not equal E

0
T*[ M

i
X
i
], except 

in the special cases for which M  2.

For the sake of brevity, we only considered the Ryten methodol-
ogy for the case of conditioning on one common factor. Ryten 
(2007) also considers the case of conditioning on two common 
factors (which means that evaluating the price of an LPI swap 
requires a double numerical integration) and shows, in his model 
set-up, which is different from ours, that (unsurprisingly) this gives 
a significant improvement in accuracy. We would certainly conjec-
ture that using two common factors would also significantly 
improve the accuracy of the prices of the LPI swaps that we 
reported in tables A and B. However, we leave confirmation of this 
conjecture for future research.

The stochastic discounting term 
t
TNr

s
Nds) is lognormally 

distributed and can be written in the form:

                      

exp rs
N ds

t

TN

PtTN
N exp

1

2 kj
NN

ksTN

N
jsTN

N ds
j 1

KN

k 1

KN

t

TN

exp ksTN

N dzks
N

k 1

KN

t

TN

If we define the forward consumer price index at time 

t to time T by FX
tT

, then by no-arbitrage arguments, 

we have FX
tT

= X
t
(PR

tT
/PN

tT
), where FX

tT
 is lognormally 

distributed (see, for example, Crosby, 2007). Since:

             

FTM TM
X = XTM

PTM TM
R

PTM TM
N

= XTM
                 

we find:

           

E t exp rs
N ds

t

TN XTM

E t exp rs
N ds

t

TN FTM TM
X

This expectation can be calculated by noting that it is the 

expectation of a product of two lognormally distributed 

random variables, each of which has deterministic mean 

and variance terms. Li (2007) provides full details.

The proof of proposition 2 is very similar to that for 

proposition 1 except that we will calculate an expectation 

involving three lognormally distributed random variables.

  
  

Tenor Nominal discount factors Real discount factors

5 0.747665196 0.863178385

10 0.574072261 0.777518375

15 0.450566319 0.717981039

20 0.361027914 0.674313663

25 0.301528182 0.657905735

30 0.242028449 0.614217677
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Conclusion
In recent years, there has been a substantial increase in demand for 
more exotic inflation derivatives. Working within a multi-factor 
version of the model of Hughston (1998) and Jarrow & Yildirim 
(2003), we have provided the economic rationale and valuation 
formulas for zero-coupon inflation swaps with delayed payment 
and period-on-period inflation swaps with delayed payments. We 
have also valued LPI swaps, with the aid of the quasi-analytic 
methodology of Ryten (2007). 
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