Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
American options and the LSM algorithm: quasi-random sequences and Brownian bridges
Suneal K. Chaudhary
Abstract
ABSTRACT
The least-squares Monte Carlo (LSM) algorithm of Longstaff and Schwartz (2001) is a method for Monte Carlo valuation of the price of American options. We use quasi-random sequences to generate asset prices which follow geometric Brownian motions, and obtain a significant increase in the rate of convergence of American min-puts and American–Bermuda–Asian calls. Using the Brownian-bridge formula, we present a method for reducing the memory requirements from O(N ×M × d) to O(Nd log(M)) for quasi-random sequences, where N is the number of paths, M is the number of timesteps and d is the number of assets, for example, in a min-put.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net