Journal of Computational Finance
ISSN:
1460-1559 (print)
1755-2850 (online)
Editor-in-chief: Christoph Reisinger
A behavioural finance-based tick-by-tick model for price and volume
Garud Iyengar, Alfred Ka Chun Ma
Abstract
ABSTRACT
We propose a model for jointly predicting stock price and volume at the tickby- tick level. We model investors’ preferences by a random utility model that incorporates several important behavioral biases such as the status quo bias, the disposition effect and loss aversion. Our model is a logistic regression model with incomplete information; consequently, we are unable to use the maximum likelihood estimation method and have to resort to a Markov chain Monte Carlo (MCMC) method to estimate the model parameters. Moreover, the constraint requiring that the volume predicted by the MCMC model exactly match the observed volume introduces serial correlation in the stock price. Thus, the standard MCMC methods for calibrating parameters do not work. We develop new modifications of the Metropolis-within-Gibbs method to estimate the parameters in our model. Our primary goal in developing this model is to predict the market impact function and volume-weighted average price of individual stocks.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@risk.net
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@risk.net